
SUPPLEMENTARY FILE OF THE PAPER “TOWARDS DIFFERENTIAL QUERY SERVICES IN COST-EFFICIENT CLOUDS” 1

Towards Differential Query Services in
Cost-Efficient Clouds

Qin Liu, Chiu C. Tan, Member, IEEE, Jie Wu, Fellow, IEEE and Guojun Wang, Member, IEEE

F

APPENDIX A
ADDITIONAL EXAMPLES
In this section, we provide examples for the Ostrovsky
scheme, EIRQ-Efficient, and EIRQ-Privacy, to better illus-
trate their working processes. In all examples, we assume
that Dic = ⟨A,B,C,D⟩ and that sample files stored in
the cloud are as shown in Table 1.

A.1 The Ostrovsky Scheme
Suppose that Alice, whose public key is pk, wishes to
retrieve files with keywords {A,B}. The working process
of the Ostrovsky scheme is as follows:

Step 1: Alice runs the GenerateQuery algorithm to send
an encrypted query Q = ⟨Epk(1), Epk(1), Ek(0), Ek(0)⟩ to
the cloud.

Step 2: the cloud runs the PrivateSearch algorithm
to generate c-e pairs, as shown in Table 2, and maps
the c-e pairs into an encrypted buffer, as shown in
Fig. 1. For example, F1 contains keywords A and B,
which corresponds to the first and second bits in Q.
Therefore, the cloud will multiply them together to form
c1 = Epk(1) · Epk(1) = Epk(2), and powers |F1| to
c1 to form e1 = c

|F1|
1 = E(2 · |F1|). Then, the cloud

maps/multiplies (c1, e1) to the first and second entries
of an encrypted buffer, where each entry is initialized
with (Epk(0), Epk(0)). Each entry has one of the three
statuses: survival, collision, and mismatch. As shown in
Fig. 1, if only one matched file is mapped, the entry state
is survival, e.g., Entry 1 and Entry 3; if more than one
matched file is mapped, the entry state is collision, e.g.,
Entry 2; if no matched files are mapped, the entry state
is mismatch, e.g., Entry 4, Entry 5, and Entry 6.

Step 3: Alice runs the FileRecover algorithm to recover
files. For example, after decryption, Alice can obtain
plaintext c-e pair (2, 2|F1|) from Entry 1, whose state is
survival. Thus, Alice can compute 2|F1|/2 to recover |F1|.

• Qin Liu and Guojun Wang are with the School of Information
Science and Engineering, Central South University, Changsha, Hunan
Province, P. R. China, 410083. E-mail: gracelq628@yahoo.com.cn,
csgjwang@mail.csu.edu.cn

• Chiu C. Tan and Jie Wu are with the Department of Computer and
Information Sciences, Temple University, Philadelphia, PA 19122, USA.
E-mail: {cctan, jiewu}@temple.edu

TABLE 1
Sample files in the cloud

File name Keywords File name Keywords
F1 {A,B} F4 {C}
F2 {B,C} F5 {D}
F3 {C,D}

TABLE 2
Sample c-e pairs

c value e value
F1 Epk(1) · Epk(1) = Epk(2) Epk(2)

|F1| = Epk(2 · |F1|)
F2 Epk(1) · Epk(0) = Epk(1) Epk(1)

|F2| = Epk(1 · |F2|)
F3 Epk(0) · Epk(0) = Epk(0) Epk(0)

|F3| = Epk(0)

F4 Epk(0) Epk(0)
|F4| = Epk(0)

F5 Epk(0) Epk(0)
|F5| = Epk(0)

Fig. 1. Mapping files twice to a buffer of six entries.
Epk(a) · Epk(b) is abbreviated to a+ b.

A.2 The EIRQ-Efficient Scheme

To make it easier to understand EIRQ-Efficient, we will
use the following example to describe its working pro-
cess. Suppose that queries are classified into 0 ∼ 4
ranks, where Alice wishes to retrieve files with keywords
{A,B} and Rank-0 query, and Bob wishes to retrieve files
with keywords {A,C} and Rank-1 query.

EIRQ-Efficient works as follows: (1) Alice and Bob
send their queries to the ADL. (2) The ADL generates
a mask matrix M , as shown in Fig. 2, where M is a 4-
row and 4-column matrix. Keywords A, B, C, and D
correspond to the first, second, third, and fourth row
in M , respectively. According to our rules, keywords A
and B are Rank-0 keywords, C is a Rank-1 keyword,
and D is a Rank-4 keyword. Thus, M [1, 1], . . . ,M [1, 4],
M [2, 1], . . . ,M [2, 4], and M [3, 1], . . . ,M [3, 3] are set to
1; the remainder elements are set to 0. (3) For each
file Fj where 1 ≤ j ≤ 5, the cloud generates cj , as
shown in Fig. 2, then powers the file content to cj to
obtain ej , and maps (cj , ej) to a buffer. For example,

SUPPLEMENTARY FILE OF THE PAPER “TOWARDS DIFFERENTIAL QUERY SERVICES IN COST-EFFICIENT CLOUDS” 2

Fig. 2. Mask matrix in EIRQ-Efficient. Symbol “{}” de-
notes Paillier encryption under the ADL’s public key pk.

the first and second rows of M correspond to F1’s
keywords A and B, respectively; the cloud calculates
M [1, k] ·M [2, k] = Epk(1) · Epk(1) = Epk(2) to obtain c1,
where k = 1. According to our rules, F1 and F2 are Rank-
0 files, which should be returned with probability 1, F3

and F4 are Rank-1 files, which should be returned with
probability 75%, and F5 is a Rank-4 file, which should
not be returned. After this step, c4 and c5 are processed
to encrypted 0s, and thus F4 and F5 are filtered out
before mapping. (4) The ADL decrypts the buffer to
obtain file contents {|F1|, |F2|, |F3|}, and distributes files
{|F1|, |F2|} to Alice, and files {|F1|, |F2|, |F3|} to Bob.

A.3 The EIRQ-Privacy Scheme

Suppose that queries are classified into 0 ∼ 4 ranks,
where Alice wishes to retrieve files with keywords
{A,B} and Rank-0 query, and Bob wishes to retrieve
files with keywords {A,C} and Rank-1 query. Therefore,
A and B are Rank-0 keywords, C is a Rank-1 keyword,
and D is a Rank-4 keyword.

We provide the sample mask matrix and the sample
c-e pairs as follows: If γ0 = 7 and γ1 = 3, the sample
mask matrix M is as shown in Fig. 3, where M is a
4-row and 7-column matrix. For each file, the cloud
multiplies the rows that correspond to file keywords,
element by element, to form a resulting row, as shown
in Fig. 3. For example, F1 contains keywords A and B
which correspond to the first and second rows of M ,
respectively. After multiplying these two rows together,
for F1, all elements in the resulting row are an encryption
of 2. Therefore, we have the following c-e pairs: for F1,
7 pairs are in the form of (Epk(2), Epk(2 · |F1|)); for F2, 3
pairs are in the form of (Epk(2), Epk(2 · |F2|)), and 4 pairs
are in the form of (Epk(1), Epk(1 · |F2|)); for Fi, 3 pairs
are in the form of (Epk(1), Epk(1 · |Fi|)), and 4 pairs are
in the form of (Epk(0), Epk(0)), where i = 3, 4; for F5, 7
pairs are in the form of (Epk(0), Epk(0)).

APPENDIX B
ADDITIONAL DISCUSSIONS

In this section, we will provide discussions from four
aspects: the overhead at the ADL, the querying delays,
no trusted ADL, and an additional performance compar-
ison. The notations are shown in Table 3.

Fig. 3. Mask matrix in EIRQ-Privacy. Symbol “{}” denotes
Paillier encryption under the ADL’s public key pk.

B.1 Overhead at the ADL
One concern with our solution is that the use of an ADL
may become a performance bottleneck. We will analyze
the computation and communication costs on the ADL
as follows. In terms of computation cost, the ADL first
encrypts every element of a mask matrix with the Paillier
cryptosystem, whose running time is O(max(γi) · d) in
the worst case (EIRQ-Privacy); then, the ADL decrypts
a buffer entry by entry, whose running time is O(fi ·
log(fi/(i/r + α))) in the worst case (EIRQ-Simple).

The communication costs can be classified into two
kinds: (1) the costs between all users and the ADL; (2)
the costs between the ADL and the cloud. For kind (1),
the ADL first receives n queries from n users, the size
of which is O(n · d), then distributes searching results to
each user, the size of which is O(

∑n
i=1 f

i). For kind (2),
the ADL first sends a combined query to the cloud, the
size of which is O(max(γi) · d) in the worst case (EIRQ-
Privacy), and then receives a buffer from the cloud, the
size of which is O(

∑r
i=0 fi · log(fi/(i/r+α)) in the worst

case (EIRQ-Simple).
During the interactions with all of the users, all mes-

sages are transferred through local area networks, the
speed of which is much faster than accessing the Inter-
net, and the communication cost is lower. In practice,
even without any cryptographic approach, the messages
from each user to the cloud are forwarded by an organi-
zation gateway. The communication cost at the ADL is
almost the same as the cost at the gateway. In addition,
our solution can be easily extended to multiple ADLs.

B.2 Querying Delays
An ADL is analogous to a query aggregator maintained
by an organization that has thousands of users inside,
querying the cloud. To aggregate sufficient queries, the
organization may require the ADL to wait for a period
of time before running our schemes, which may incur
a certain querying delay. However, for the cost-efficient
cloud applications, a certain degree of querying delay
is tolerable to the users for saving cost. For example,
consider that an organization has outsourced many files
to the cloud for better sharing by its staff. Each staff
member downloads files of his interest from the cloud by
performing keyword-based searches. When more than

1. We use subscript i for notations f , p, q, γ, and β to reflect rank,
and we use p′, f i, and f ′

i to denote threshold failure rate, the number
of files that match the i-th user’s query, and the number of files matching
Rank-i query but mismatching higher ranked queries, respectively.

SUPPLEMENTARY FILE OF THE PAPER “TOWARDS DIFFERENTIAL QUERY SERVICES IN COST-EFFICIENT CLOUDS” 3

TABLE 3
Summary of Notations

Notation 1 Description
d Number of keywords in the dictionary
r The lowest query rank
f The estimated number of files matching Q
p, q Failure rate, survival rate
α, β, γ Threshold value, buffer size, mapping times

one user wishes to download file Fj , the querying cost
will be reduced if the ADL combines their queries to
download Fj once.

Note that the degree of aggregation can be controlled
through a time-out mechanism to meet a given querying
delay requirement, based on different policies. One pol-
icy is to let the organization set a parameter T during
system setup, as to determine the time that the ADL
will wait before querying the cloud. When T is set to
zero, this is degraded to a normal sequential search. An
alternative policy is to allow each user to personally
specify the tolerable delay. Let Ti denote the tolerable
delay for user i. User i will send Ti together with his
query to the ADL, which will record Ti in an alarming
table. If any of the time in the alarming table is overdue,
the ADL will generate a mask matrix with all of the
queries received so far, and send it to the cloud.

B.3 No Trusted ADL

The ADL as an aggregator will collect all messages
between the users and the cloud, and may become the
biggest attacking target. To avoid possible information
leaking, it may be required to hide user privacy from the
ADL. We will discuss how our schemes work without
a trusted ADL, based on the techniques used in our
previous work [1]. The system model is shown in Fig. 4,
where the Combiner and the Distributor substitute the
ADL. As in [1], three kinds of secure functions are used,
the secret seeds of which are shared by the users and
the cloud: Shuffle function is used to shuffle a dictionary;
Pseudonym function is used to calculate file pseudonym;
Obfuscate function is used to obfuscate file content.

For ease of exposition, we use the following exam-
ple to describe the working process of EIRQ-Efficient
without a trusted ADL: suppose that Dic = ⟨A,B,C,D⟩
and queries are classified into 0 ∼ 4 ranks. Alice uses
keyword {A} with Rank-0 query, and Bob uses keyword
{B} with Rank-1 query. The sample files stored in the
cloud are as shown in Fig. 4.

Step 1. Alice and Bob send their mask matrices (see
Fig. 5), denoted as MAlice and MBob, to the Combiner,
and send their shuffled queries, denoted as QAlice and
QBob, to the Distributor. Each user sets the values of
mask matrix elements as the MatrixConstruct algorithm
in EIRQ-Efficient, and encrypts each element under the
Distributor’s public key pk. The shuffled queries are 0-1
bit strings of d bits. Each user first shuffles the dictionary
to Dic′, then sets the i-th bit of the query to 1 only if the

Fig. 4. System model without a trusted ADL.

i-th keyword in Dic′ is chosen. If Dic′ =< B,C,A,D >,
QAlice =< 0, 0, 1, 0 > and QBob =< 1, 0, 0, 0 >.

Step 2. The Combiner generates a combined mask
matrix M by performing multiplications on MAlice and
MBob element by element (see Fig. 5), and sends M to
the cloud.

Step 3. The cloud processes M on the whole file
collection, and returns two buffers, pseudonym buffer and
content buffer, to the Distributor. The pseudonym buffer is
constructed as follows. Each keyword Dic[i] is associated
with a c-e pair, denoted as (cwi , ewi). The cloud chooses
the element in the i-th row and the first column of
M as cwi , and then powers ξwi to cwi to form ewi ,
where ξwi is the concatenation of all pseudonyms of
files that contain Dic[i]. For example, let ηj denote Fj ’s
pseudonym. (cA, eA) = (Epk(1), Epk(1 · ξA)), where ξA =
η1; (cB, eB) = (Epk(1), Epk(1·ξB)), where ξB = η1||η2; the
c-e pairs of other keywords are encrypted to 0s. Finally,
the cloud shuffles the dictionary, and uses a series of map
functions (h-type) to map (cwi , ewi) to multiple entries of
the pseudonym buffer, where 1 ≤ i ≤ d. The input of
these map functions is the position of a keyword in the
shuffled dictionary, and the output is a mapping location
in the pseudonym buffer. The content buffer is construct-
ed as follows. Each file Fj is associated with a c-e pair,
denoted as (cj , ej). The cloud generates cj as the FileFilter
algorithm in EIRQ-Efficient, and powers |Fj |′||ηj to cj
to form ej , where |Fj |′ = (|Fj | · xj) with xj being
the obfuscating factor generated by the obfuscate func-
tion. For example, (c1, e1) = (Epk(2), Epk(2 · (|F1|′||η1)));
(c2, e2) = (Epk(1), Epk(1 · (|F2|′||η2))); the c-e pairs of
other files are encrypted to 0s. Finally, the cloud shuffles
the dictionary, and uses another series of map functions
(l-type) to map (ci, ei) to multiple entries of the content
buffer, where 1 ≤ i ≤ t. The input of these mapping
functions is the pseudonym of a file, and the output is
a mapping location in the content buffer.

Step 4. The Distributor recovers {ξA, ξB} from the
pseudonym buffer, and recovers {|F1|′||η1, |F2|′||η2} from
the content buffer, as the FileRecover algorithm in the
Ostrovsky scheme. Then, it distributes {|F1|′} and

SUPPLEMENTARY FILE OF THE PAPER “TOWARDS DIFFERENTIAL QUERY SERVICES IN COST-EFFICIENT CLOUDS” 4

Fig. 5. Sample mask matrices. Symbol “{}” denotes
Paillier encryption under the Distributor’s public key pk.

{|F1|′, |F2|′} to Alice and Bob, respectively. To distribute
searching results to each user correctly, the Distributor
first uses the positions of 1s in a shuffled query as
the inputs of the h-type map functions to locate the
pseudonyms of all matched files in the pseudonym
buffer. It then uses the pseudonyms of these matched
files as the inputs of the l-type map functions as to
locate the obfuscated contents of the matched files in
the content buffer.

Step 5. Each user recovers file content by dividing
the obfuscated file content by the obfuscated factor. For
example, Alice recovers |F1| by calculating |F1|′/x1, and
Bob recovers |F1| and |F2| by calculating |F1|′/x1 and
|F2|′/x2, respectively.

Analysis. User privacy is protected from the Combiner
and the Distributor as follows. The messages aggregated
by the Combiner are several mask matrices. Since the
mask matrices are encrypted under the Distributor’s
public key, the Combiner cannot know the users’ access
privacy and rank privacy. The messages aggregated by
the Distributor are shuffled queries and two buffers.
First, the secret seed of the shuffle function is blind
to the Distributor, and thus it cannot know the users’
access privacy and rank privacy. Second, the cloud only
maps file pseudonyms and obfuscated file contents to the
buffers. Since the secret seeds of the pseudonym function
and the obfuscate function are blind to the Distributor, it
cannot know which files are really returned. Note that,
to ensure that our schemes work well without trusted
ADL, we assume that the Combiner and the Distributor
will not collude with any other entities. In other words,
our schemes fail when the following cases happen: (1)
the Combiner colludes with the user or the cloud. The
Combiner will know the shuffle function, with which it
can deduce which keywords each user is searching for;
(2) the Distributor colludes with the user or the cloud.
The Distributor will know the obfuscate function and the
pseudonym function, with which it can deduce which
files are returned to each user.

B.4 Additional Comparisons
In this section, we compare the computation and com-
munication costs incurred on the cloud between no
ranked queries under the ADL (No Rank), the Ostrovsky
scheme [2], and the work by Bethencourt et al. [3] (see
Table 4). Suppose that there are n users querying the
cloud with threshold failure rate p′, t files stored in
the cloud whose keywords constitute a public dictio-
nary of size d, f i files matching the i-th user’s query,

TABLE 4
No Rank vs. Ostrovsky scheme vs. Bethencourt scheme

Scheme Communication Computation

Ref. [2] O(n · d+
∑n

i=1 f
i · log(f i/p′)) O(n · t)

Ref. [3] O(n · d+
∑n

i=1 f
i) O(n · t)

No Rank O(d+ f · log(f/p′)) O(t)

and f files matching the combined query. In terms of
computational cost, we only consider the cost of the
exponential operation, which is the most expensive. In
No Rank, the running time is mainly on the encryption
of t files, denoted as O(t). In [2] and [3], the PrivateSearch
algorithm will be run n times, and each will perform
encryptions on t files. Thus, the total computational cost
is O(n · t).

In terms of communication cost, we consider the query
size sent to the cloud and the buffer size obtained from
the cloud. In No Rank, the ADL sends a combined query
of size O(d) to the cloud, which will return a buffer of
size O(f · log(f/p′)) to the ADL. In [2], user i sends his
query of size O(d) to the cloud, which will return a buffer
of size O(f i ·log(f i/p′)) to the user. In [3], user i sends his
query of size O(d) to the cloud, which will return a buffer
of size O(f i) to the user. Thus, the total communication
cost of [2] and [3] is O(n · d +

∑n
i=1 f

i · log(f i/p′)) and
O(n · d+

∑n
i=1 f

i), respectively.

REFERENCES
[1] Q. Liu, C. Tan, J. Wu, and G. Wang, “Cooperative private searching

in clouds,” Journal of Parallel and Distributed Computing, 2012.
[2] R. Ostrovsky and W. Skeith, “Private searching on streaming data,”

in Proc. of CRYPTO, 2005.
[3] J. Bethencourt, D. Song, and B. Waters, “New techniques for private

stream searching,” ACM Transactions on Information and System
Security, 2009.

